Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123743, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113556

RESUMEN

Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.


Asunto(s)
Arsénico , Oligoelementos , Humanos , Calcio/análisis , Espectrometría por Rayos X/métodos , Oligoelementos/análisis , Hierro/análisis
2.
PLoS One ; 18(10): e0289113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37856554

RESUMEN

This work presents the first in-depth study of soil radioactivity in the mangrove forest of Bangladesh part of the Sundarbans. It used HPGe gamma-ray spectrometry to measure the amount of natural radioactivity in soil samples from Karamjal and Harbaria sites of the world's largest mangrove forest. The activity concentrations of most of the 226Ra (14±2 Bqkg-1 to 35±4 Bqkg-1) and 232Th (30±5 Bqkg-1 to 50±9 Bqkg-1) lie within the world average values, but the 40K concentration (370± 44 Bqkg-1 to 660±72 Bqkg-1) was found to have exceeded the world average value. The evaluation of radiological hazard parameters revealed that the outdoor absorbed dose rate (maximum 73.25 nGyh-1) and outdoor annual effective dose (maximum 0.09 mSvy-1) for most samples exceeded the corresponding world average values. The elevated concentration of 40K is mainly due to the salinity intrusion, usage of fertilizers and agricultural runoff, and migration of waste effluents along the riverbanks. Being the pioneering comprehensive research on the Bangladesh side of the Sundarbans, this study forms a baseline radioactivity for the Sundarbans before the commissioning of the Rooppur Nuclear Power Plant in Bangladesh.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Dosis de Radiación , Torio/análisis , Radioisótopos de Potasio/análisis , Suelo , Humedales , Contaminantes Radiactivos del Suelo/análisis
3.
Appl Radiat Isot ; 202: 111047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37782983

RESUMEN

Many minerals and compounds show thermoluminescence (TL) properties but only a few of them can meet the requirements of an ideal dosimeter. Several phosphate materials have been studied for low-dose dosimetryin recent times. Among the various phosphates, ABPO4-type material shows interesting TL properties. In this study, an ABPO4-type (A = Lithium, B=Calcium) phosphor is synthesized using a modified solid-state diffusion method. Temperature is maintained below 800 °C in every step of phosphor preparation to obtain the pure phase of Lithium calcium phosphate (LiCaPO4). The purpose of this work is to synthesize LiCaPO4 using a simple method, examine its structural and luminescence properties in order to gain a deeper understanding of its TL characteristics. The general TL properties, such as TL glow curve, dose linearity, sensitivity, and fading, are investigated. Additionally, this study aims to determine various kinetic parameters through Glow Curve Deconvolution (GCD) method using the Origin Lab software together with the Chen model. XRD analysis confirmed the phase purity of the phosphor with a rhombohedral structure. Lattice parameters, unit cell volume, grain size, dislocated density, and microstrain were also calculated from XRD data. Raman analysis and Fourier Transform Infrared analysis were used to collect information about molecular bonds, vibrations, identity, and structure of the phosphor. To investigate TL properties and associated kinetic parameters, the phosphor was irradiated with 6.0 MV (photon energy) and 6.0 MeV (electron energy) from a linear accelerator for doses ranging from 0.5 Gy to 6.0 Gy. For both photon and electron energy, TL glow curves have two identical peaks near 200 °C and 240 °C.The TL glow curves for 0.5 Gy-6 Gy are deconvoluted, then fitted with the appropriate model and then calculated the kinetic parameters. Kinetic parameters such as geometric factor (µg), order of kinetics, activation energy (E), and frequency factor (s) are obtained from Chen's peak shape method. The dose against the TL intensity curve shows that the response is almost linear in the investigated dose range. For photon and electron energy, the phosphor is found to be the most sensitive at 2.0 Gy and 4.0 Gy, respectively. The phosphor shows a low fading and after 28 days of exposure, it shows a signal loss of better than 3%. The studied TL properties suggest the suitability of LiCaPO4 in radiation dosimetry and associated fields.

4.
Appl Radiat Isot ; 202: 111071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871398

RESUMEN

Due to the extended localized fluoroscopy, many radiographic exposures, and multiple procedures that might result in tissue reaction, patients and personnel received a significant radiation dose during interventional cardiology (IR) procedures. This study aims to calculate the radiation risk and assess patient and staff effective doses during IC procedures. Thirty-two patients underwent a Cath lab treatment in total. Ten Cath lab personnel, including six nurses, two cardiologists, and two X-ray technologists. Optical stimulating-luminescent dosimeters (OSL) (Al2O3:C) calibrated for this purpose were used to monitor both occupational and ambient doses. Using an automated OSL reader, these badges were scanned. The Air Kerma (mGy) and Kerma Area Products (KAP, mGy.cm2) have a mean and standard deviation (SD) of 371 ± 132 and 26052, respectively. The average personal dose equivalent (mSv) and its range for cardiologists, nurses and X ray technologists were 1.11 ± 0.21 (0.96-1.26), 0.84 ± 0.11 (0.68-1.16), and 0.68 ± 0.014 (0.12-0.13), respectively. The current study findings showed that the annual effective dose for cardiologists, nurses, and X-ray technologists was lesser than the yearly occupational dose limit of 20 mSv recommended by national and international guidelines. The patients' doses are comparable with some previously published studies and below the tissue reaction limits.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Humanos , Dosis de Radiación , Exposición Profesional/análisis , Radiografía , Fluoroscopía/efectos adversos , Fluoroscopía/métodos , Exposición a la Radiación/efectos adversos , Medición de Riesgo
5.
Sci Rep ; 13(1): 11918, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488183

RESUMEN

We have developed a radioluminescence-based survey meter for use in industries in which there is involvement in naturally occurring radioactive material (NORM), also in support of those needing to detect other weak emitters of radiation. The functionality of the system confronts particular shortcomings of the handheld survey meters that are currently being made use of. The device couples a LYSO:Ce scintillator with a photodetector via a polymer optical fibre waveguide, allowing for "intrinsically safe" inspection within pipework, separators, valves and other such component pieces. The small-diameter optical fibre probe is electrically passive, immune to electromagnetic interference, and chemically inert. The readout circuit is entirely incorporated within a handheld casing housing a silicon photomultiplier (SiPM) detection circuit and a microprocessor circuit connected to an LCD display. A 15 m long flexible PMMA optical fibre waveguide is butt coupled to an ABS plastic probe that retains the LYSO:Ce scintillator. Initial tests have included the use of lab-based mixed gamma-ray sources, measurements being made in concert with a reference conventional GM survey-meter. Characterization, via NORM sources at a decontamination facility, has shown useful sensitivity, covering the dose-rate range 0.10- to 28 µSv h-1 (R-squared 0.966), extending to 80 µSv/h as demonstrated in use of a Cs-137 source. The system is shown to provide an effective tool for detection of radioactivity within hard to access locations, in particular for sources emitting at low radiation levels, down to values that approach background.

6.
Appl Radiat Isot ; 199: 110920, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37419002

RESUMEN

The present study continues research into the utilisation of carbonaceous media for medical radiation dosimetry, focusing on the effects of surface area-to-volume ratio and carbon content on structural interaction alterations and dosimetric properties in sheet- and bead-type graphitic materials (with the respective carbon content of ∼98 wt% and ∼90 wt%). Using 60Co gamma-rays and doses from 0.5 Gy to 20 Gy, the study has been made of the response of commercially available graphite in the form of 0.1 mm, 0.2 mm, 0.3 mm and 0.5 mm thick sheets, also of activated carbon beads. Confocal Raman and photoluminescence spectroscopy have been employed, examining radiation-induced structural interaction alterations. Dose-dependent variation in the Raman intensity ratio ID/IG relates to the varying dominance of defect generation and dose-driven defect annealing. Of the various thickness graphite sheets, the 0.1 mm thick medium possesses the greatest surface area-to-volume ratio. Perhaps unsurprisingly, it also exhibits the greatest thermoluminescence (TL) yield compared to that of the other carbonaceous sheet foils used herein. Moreover, the second greatest mass-normalised TL yield has been observed to be that of the porous beads, reflected in the greater defect density (ID/IG > 2) when compared to the other media, due in part to their inherent feature of large internal surface area. Considering the challenge posed in matching skin thickness with skin dose, the near tissue equivalent graphite sheets show particular promise as a skin dosimeter, sensitive as a function of depth.

7.
Prog Biophys Mol Biol ; 182: 59-74, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37307955

RESUMEN

Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of ß-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Péptidos beta-Amiloides/química , Espectrometría Raman/métodos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteómica , Amiloidosis/patología
8.
Appl Radiat Isot ; 198: 110875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257265

RESUMEN

Review is provided of a number of low-dose, low dose rate situations that in study require advances in the development of dosimetric facilities. Using a clinical linac set up to provide doses down to the few mGy level, the performance of a real-time radioluminescence system has then been illustrated, accommodating pulsed as well as continuous dose delivery. The system gate times provide for tracking of the pattern of dose delivery, allowing detailed account of dose and dose-rate variations. The system has been tested in both x-ray and electron mode dose delivery.


Asunto(s)
Radiometría , Radiometría/métodos , Radiografía , Dosificación Radioterapéutica , Rayos X
9.
Radiat Phys Chem Oxf Engl 1993 ; 210: 111023, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37206369

RESUMEN

Radiological staff, especially radiographers, work as front liners against the COVID-19 outbreak. This study aims to assess compliance with radiation protection and infection control practices during COVID-19 mobile radiography procedures. This cross-sectional study included 234 radiographers (females, 56%, n = 131; males, 44%, n = 103) who were asked to complete an online questionnaire consisting of demographic data, radiation protection and infection control practices during COVID-19 portable cases, and knowledge and awareness. After informed consent was completed, SPSS statistical software was used for the data analysis. The most common age group of participants ranged from 18 to 25 years old (30.3%, n = 71). Bachelor's degree holders were 74.4% (n = 174). Most radiographers (39.7%, n = 93) had a working experience of 1-5 years, followed by 27.8% (n = 65) with more than 16 years of experience. Most respondents (62.4%, n = 146) handled approximately 1-5 cases daily, the majority of them (56%, n = 131) stated affirmatively they had obtained special training to handle COVID-19, and when inquired if they had received any special allowances for handling COVID-19 suspected/confirmed cases most of them stated negative (73.9%, n = 173). Most participants stated that they always wear a TLD during portable cases (67.1%, n = 157) and a lead apron (51.7%, n = 121). Around 73% (n = 171) knew the latest information on COVID-19 and attended the COVID-19 awareness course. A significant association was found between the work experience of the radiographers and their responses to following the best practices (p = 0.018, α = 0.05). Radiographers who had COVID-19 training (µ = 48.78) tend to adhere more to best practices than those who have not (p = 0.04, α = 0.05). Further, respondents who handled more than 16/more COVID-19 suspected/confirmed cases followed the best practices more (µ = 50.38) than those who handled less (p = 0.04, α = 0.05). This study revealed detailed information on radiation protection and infection control practices during COVID-19 mobile radiography. It has been observed that the participants/radiographers have good knowledge and awareness of radiation protection and infection-control practices. The present results may be used to plan future requirements regarding resources and training to ensure patient safety.

10.
PLoS One ; 18(5): e0286267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220107

RESUMEN

Radon (222Rn), an inert gas, is considered a silent killer due to its carcinogenic characteristics. Dhaka city is situated on the banks of the Buriganga River, which is regarded as the lifeline of Dhaka city because it serves as a significant source of the city's water supply for domestic and industrial purposes. Thirty water samples (10 tap water from Dhaka city and 20 surface samples from the Buriganga River) were collected and analyzed using a RAD H2O accessory for 222Rn concentration. The average 222Rn concentration in tap and river water was 1.54 ± 0.38 Bq/L and 0.68 ± 0.29 Bq/L, respectively. All the values were found below the maximum contamination limit (MCL) of 11.1 Bq/L set by the USEPA, the WHO-recommended safe limit of 100 Bq/L, and the UNSCEAR suggested range of 4-40 Bq/L. The mean values of the total annual effective doses due to inhalation and ingestion were calculated to be 9.77 µSv/y and 4.29 µSv/y for tap water and river water, respectively. Although all these values were well below the permissible limit of 100 µSv/y proposed by WHO, they cannot be neglected because of the hazardous nature of 222Rn, especially considering their entry to the human body via inhalation and ingestion pathways. The obtained data may serve as a reference for future 222Rn-related works.


Asunto(s)
Radón , Ríos , Humanos , Bangladesh , Agua
11.
Appl Radiat Isot ; 196: 110771, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933313

RESUMEN

Thermoluminescence (TL) materials have a broad variety of uses in various fields, such as clinical research, individual dosimetry, and environmental dosimetry, amongst others. However, the use of individual neutron dosimetry has been developing more aggressively lately. In this regard, present study establishes a relationship between the neutron dosage and the optical property changes of graphite-rich materials caused by high doses of neutron radiation. This has been done with the intention of developing a novel, graphite-based radiation dosimeter. Herein, the TL yield of commercially graphite-rich materials (i.e. graphite sheet, 2B and HB grade pencils) irradiated by neutron radiation with doses ranging from 250 Gy to 1500 Gy has been investigated. The samples were bombarded with thermal neutrons as well as a negligible amount of gamma rays, from the nuclear reactor TRIGA-II installed at the Bangladesh Atomic Energy Commission. The shape of the glow curves was observed to be independent of the given dosage, with the predominant TL dosimetric peak maintained within the region of 163 °C-168 °C for each sample. By studying the glow curves of the irradiated samples, some of the most well theoretical models and techniques were used to compute the kinetic parameters such as the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability, and trap lifetime (τ). All of the samples were found to have a good linear response over the whole dosage range, with 2B grade of polymer pencil lead graphite (PPLGs) demonstrating a higher level of sensitivity than both HB grade and graphite sheet (GS) samples. Additionally, the level of sensitivity shown by each of them is highest at the lowest dosage that was given, and it decreases as the dose increases. Importantly, the phenomenon of dose-dependent structural modifications and internal annealing of defects has been observed by assessing the area of deconvoluted micro-Raman spectra of graphite-rich materials in high-frequency areas. This trend is consistent with the cyclical pattern reported in the intensity ratio of defect and graphite modes in previously investigated carbon-rich media. Such recurrent occurrences suggest the idea of employing Raman microspectroscopy as a radiation damage study tool for carbonaceous materials. The excellent responses of the key TL properties of the 2B grade pencil demonstrate its usefulness as a passive radiation dosimeter. As a consequence, the findings suggest that graphite-rich materials have the potential to be useful as a low-cost passive radiation dosimeter, with applications in radiotherapy and manufacturing.

12.
Environ Monit Assess ; 195(3): 382, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759352

RESUMEN

This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis , Bangladesh , Suelo/química , Plantas de Energía Nuclear , Torio/análisis , Radio (Elemento)/análisis , Radioisótopos de Potasio/análisis , Espectrometría gamma , Radiación de Fondo
13.
Appl Radiat Isot ; 193: 110626, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640699

RESUMEN

Breast cancer is a common malignancy for females (25% of female cancers) and also has low incidence in males. It was estimated that 1% of all breast malignancies occur in males with mortality rate about 20%, with annual increase in incidence. Risk factors include age, family history, exposure to ionizing radiation and high estrogen and low of androgens hormones level. Diagnosis and screening are challenging due to limiting effectiveness of breast cancer screening. Therefore, patients may expose to ionizing radiation that may contribute in breast cancer incidence in males. In literature, limited studies were published regarding radiation exposure for males during mammography. The objective of this research is to quantify patient doses during male mammogram and to estimate the projected radiogenic risk during the procedure. In total, 42 male patients were undergone mammogram for breast cancer diagnosis during two consecutive years. The mean and range of patient age (years) is 45 (23-80). The mean and standard deviation (SD) of the peak tube potential and tube current time product are 28.64 ± 2. and 149 ± 35.1, respectively. The mean, and range of patients' entrance surface air kerma (ESAK, mGy) per single breast procedure was 5.3 (0.47-27.5). Male patient's received comparable radiation dose per mammogram compared to female procedures. With increasing incidence of male breast cancer, proper guidelines are necessary for the mammographic procedure are necessary to reduce unnecessary radiation doses and radiogenic risk.


Asunto(s)
Neoplasias de la Mama , Exposición a la Radiación , Humanos , Femenino , Masculino , Dosis de Radiación , Mamografía/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Exposición a la Radiación/análisis
14.
Appl Radiat Isot ; 192: 110610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525913

RESUMEN

In comparison to adults and paediatric are more sensitive to ionizing radiation exposure. Computed tomography (CT) is now the dominant source of medical radiologic tests for patients, accounting for more than 70% of total doses to the general public. Paediatric CT brain scans (with and without contrast) are routinely performed for a variety of clinical reasons. As a result, this parameter must be calculated in order to determine relative radiation risk. The goal of this study is to assess the radiation risk to children during CT brain diagnostic procedures. Three hundred fifty three child patients' radiation risk doses were assessed over the course of a year. The mean and ranged of the children's radiation doses were 40.6 ± 8.8 (27.8-45.8) CTDIvol (mGy) and 850 ± 230 (568.1-1126.4) DLP (mGy.cm) for the brain with contrast medium. For CT brain without contrast, the patients' doses were 40.9 ± 9.4 (14.27-64.07) CTDIvol (mGy), and 866.1 ± 289.3 (203.6-2484.9) DLP (mGy.cm). The characteristics related to the radiation dose were retrieved from the scan protocol generated by the CT system by the participating physicians after each procedure. Furthermore, optimizing the CT acquisition parameter is critical for increasing the benefit while lowering the procedure's radiogenic risk. The patients' radiation dose is comparable with the most previously published studies and international diagnostic reference levels (DRLs). Radiation dose optimization is recommended due to high sensitivity of the paediatric patients to ionizing radiation.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Adulto , Humanos , Niño , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Cabeza , Encéfalo/diagnóstico por imagen , Valores de Referencia
15.
Appl Radiat Isot ; 193: 110627, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36584412

RESUMEN

Computed tomography is widely used for planar imaging. Previous studies showed that CR systems involve higher patient radiation doses compared to digital systems. Therefore, assessing the patient's dose and CR system performance is necessary to ensure that patients received minimal dose with the highest possible image quality. The study was performed at three medical diagnostic centers in Sudan: Medical Corps Hospital (MCH), Advance Diagnostic Center (ADC), and Advance Medical Center (AMC). The following tools were used in this study: Tape measure, Adhesive tape, 1.5 mm copper filtration (>10 × 10 cm), TO 20 threshold contrast test object, Resolution test object (e.g., Huttner 18), MI geometry test object or lead ruler, Contact mish, Piranha (semiconductor detector), Small lead or copper block (∼5 × 5 cm), and Steel ruler, to do a different type of tests (Dark Noise, Erasure cycle efficiency, Sensitivity Index calibration, Sensitivity Index consistency, Uniformity, Scaling errors, Blurring, Limiting spatial Resolution, Threshold, and Laser beam Function. Entrance surface air kerma (ESAK (mGy) was calculated from patient exposure parameters using DosCal software for three imaging modalities. A total of 199 patients were examined (112 chest X rays, 77 lumbar spine). The mean and standard deviation (sd) for patients ESAK (mGy) were 2.56 ± 0.1 mGy and 1.6 mGy for the Anteroposterior (AP) and lateral projections for the lumbar spine, respectively. The mean and sd for the patient's chest doses were 0.1 ± 0.01 for the chest X-ray procedures. The three medical diagnostic centers' CR system performance was evaluated and found that all of the three centers have good CR system functions. All the centers satisfy all the criteria of acceptable visual tests. CR's image quality and sensitivity were evaluated, and the CR image is good because it has good contrast and resolution. All the CR system available in the medical centers and upgraded from old X-ray systems to new systems, has been found to work well. The patient's doses were comparable for the chest X-ray procedures, while patients' doses from the lumbar spine showed variation up to 2 folds due to the variation in patients' weight and X-ray machine setting. Patients dose optimization is recommended to ensure the patients received a minimal dose while obtaining the diagnostic findings.


Asunto(s)
Cobre , Vértebras Lumbares , Humanos , Dosis de Radiación , Radiografía , Rayos X
16.
Appl Radiat Isot ; 192: 110548, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36527854

RESUMEN

Computed tomography coronary angiography (CTCA) has generated tremendous interest over the past 20 years by using multidetector computed tomography (MDCT) because of its high diagnostic accuracy and efficacy in assessing patients with coronary artery disease. This technique is related to high radiation doses, which has raised serious concerns in the literature. Effective dose (E, mSv) may be a single parameter meant to reflect the relative risk from radiation exposure. Therefore, it is necessary to calculate this quantity to point to relative radiation risk. The objectives of this study are to evaluate patients' exposure during diagnostic CCTA procedures and to estimate the risks. Seven hundred ninety patients were estimated during three successive years. The patient's exposure was estimated based on a CT device's delivered radiation dose (Siemens Somatom Sensation 64 (64-MDCT)). The participating physicians obtained the parameters relevant to the radiation dose from the scan protocol generated by the CT system after each CCTA study. The parameters included the volume CT dose index (CTDIvol, mGy) and dose length product (DLP, mGy × cm). The mean and range of CTDIvol (mGy) and DLP (mGy × cm) for three respective year was (2018):10.8 (1.14-77.7) and 2369.8 ± 1231.4 (290.4-6188.9), (2019): 13.82 (1.13-348.5), and 2180.5 (501.8-9534.5) and (2020) 10.9 (0.7-52.9) and 1877.3 (149.4-5011.1), respectively. Patients' effective doses were higher compared to previous studies. Therefore, the CT acquisition parameter optimization is vital to reduce the dose to its minimal value.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Humanos , Angiografía Coronaria/efectos adversos , Angiografía Coronaria/métodos , Dosis de Radiación , Angiografía por Tomografía Computarizada/efectos adversos , Angiografía por Tomografía Computarizada/métodos , Corazón
17.
Appl Radiat Isot ; 190: 110452, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183658

RESUMEN

CT scanning deliver much higher radiation doses than planar radiological procedures, which puts patients to high risks. This study measures and evaluates patient doses during chest and abdomen computed tomography procedures. Particular attention is given to measuring the dose to the equivalent breast (mSv) and to estimate the associated risks of breast cancer to young female patients (15-35 years). Data was obtained from standard examinations from three hospitals. The measured values of CT dose indexes, CTDI (mGy) as well as exposure-related parameters were used for assessment. Breast and effective doses were extrapolated using a software. The results showed remarkable variations of the mean organ equivalent doses for similar CT examinations in the studied hospitals. This could be attributed to the variation in CT scanning imaging technique, and clinical indications. The average effective dose to the chest was 7.9 mSv (2.3-47.0 mSv) and for the abdomen the mean dose was 6.6 mSv, ranging from (3.3-27 mSv). The breast received equivalent doses from chest and abdomen procedures as follows: 10.2 (1.6-33 mSv) and 10.1(2.3-19 mS) Sv respectively. Each procedure yielded high risks of breast cancer for young females. Implementation of accurate referral criteria is recommended to avoid unnecessary breast radiation exposure.


Asunto(s)
Neoplasias de la Mama , Tomografía Computarizada por Rayos X , Humanos , Femenino , Dosis de Radiación , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodos , Mama/diagnóstico por imagen , Tórax , Neoplasias de la Mama/diagnóstico por imagen
18.
Appl Radiat Isot ; 188: 110419, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988526

RESUMEN

Various thicknesses of 2B grade polymer pencil lead graphite (PPLG) were used in the present study, which focussed on the alteration in crystalline lattice and the structural defect caused by the electron irradiation dosage ranging from 0.5 to 20 Gy delivered by an Elekta HD Linac. The fundamental trap parameters i.e. kinetics order (b), activation energy (E), and frequency factor (s) of the PPLG samples have been estimated using the initial rise and peak shape approaches by fitting the thermoluminescence (TL) glow peaks of the PPLG samples exposed to 20 Gy. The lifetime of the TL glow peak is also presented, which provides information on the stability of the TL signal at maximum temperatures. Raman, Photoluminescence (PL), and X-ray diffraction (XRD) spectra are being used to observe the structural changes that have occurred as a result of the radiation doses. These spectroscopies offer an understanding of the physical parameters that are related to the defects and taking part in the luminescence process. When all of the data are taken into account, it is anticipated that 0.3 mm PPLG is an effective material for dosimetry. The results of these lines of research are intended to educate the innovation of versatile graphite radiation dosimeters as a low-cost efficient system for radiation detection. The studied PPLG offers tissue equivalence as well as high spatial resolution, both are desirable criteria for a material to be used in the monitoring of ionising radiation or a variety of medical applications.


Asunto(s)
Grafito , Dosimetría Termoluminiscente , Electrones , Mediciones Luminiscentes , Radiometría , Dosimetría Termoluminiscente/métodos
19.
Appl Radiat Isot ; 189: 110409, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36037726

RESUMEN

The dosimetric characteristics of newly developed gadolinium (Gd) glass dosimeter produced via sol-gel method are reported. Irradiation were made using a 750 kW neutron flux thermal power and 1.25 MeV 60Co gamma rays with entrance doses from 2 to 10 Gy. Investigation has been done on various Gd dopant concentrations, ranging from 1 to 10 mol%. The Gd-doped silica glass have been characterised for thermoluminescence (TL) dose response, sensitivity, linearity index, glow curve and kinetic parameter analysis. For particular dopant concentration obtained in 6 mol% Gd, the least squares fit shows the change in TL yield, correlation coefficient (r2) of better than 0.980 (at 95% confidence level), with neutron and gamma exposure to be 8 and 4 times greater than that of 1 mol% Gd, respectively. Broad peaks in the absence of any sharp peak observed in the glow curve confirms the amorphous nature of the prepared glass. A glow curve of Gd-doped SiO2 sample is observed with a single prominent peak (Tm) within 200-250 °C (peak shifting appears with respect to the increment of dopant concentration) and 350 °C (for all respective Gd dopants) for neutron and gamma irradiations, respectively. Deconvolution shows the glow curves of the Gd-doped SiO2 glass to be formed of seven and five overlapping peaks, with figures of merit below 2% (FOM) of between 1.38-1.79 and 1.30-1.97 for the particular neutron and gamma irradiations, respectively. Through use of Glowfit deconvolution software, the key trapping parameters of activation energy, E and frequency factor, s-1 were calculated for the Gd-doped SiO2 glass. The mechanism of TL yield with the gradual increase in Gd concentrations and doses is explained upon the incorporation of Gd and radiation damage that change the structure of the electron traps in the glass matrix. These early results indicate that selectively screened Gd-SiO2 glass can be developed into a promising TL system towards dosimetric applications.

20.
Appl Radiat Isot ; 186: 110271, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35598564

RESUMEN

In case of any natural disasters or technical failures of nuclear facilities, the surrounding media including human beings may receive unexpected radiation exposures. In such a situation, there is no viable way to know how much radiation dose is received by human beings. Realizing that motorized vehicles are parked at fixed but increasing distances within the nuclear installation and industrial environment, this study investigates the kinetic parameters of readily available car windscreens which form the basis to be employed in post-accident dose reconstruction or for retrospective dosimetry. To understand the luminescence features of this crystalline media, a convenient thermoluminescence (TL) technique has been employed. Several well-defined theoretical models and methods were employed to calculate the kinetic parameters including the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability and trap lifetime (τ), by analyzing the glow curves of the irradiated samples. The analysed trapping parameters indicate that the Toyota (E = 0.75-1.31 eV, s = 3.0E+6 - 3.7E+9 (s-1), τ = 6.9E+5 - 1.3E+14 s) and Honda (E = 0.95-1.68 eV, s = 2.1E+10 - 4.1E+13 (s-1), τ = 2.2E+9 - 3.1E+20 s) windscreen offer promising features for conventional TL dosimetry applications, while the obtained longer lifetime (τ = 6.8E+10 - 8.6E+29 s) or higher activation energy (E = 1.23-2.15 eV) for Proton brand windscreen indicates better stability or slow fading of the material, thus suitable for retrospective TL dosimetry. In addition, by assessing the area of deconvoluted micro-Raman spectra of windshield glasses in high-frequency regions, it has been observed the phenomenon of dose-dependent structural alterations and internal annealing of defects. This pattern is also consistent with those cyclical pattern observed in the intensity ratio of defect and graphite modes in the studies of carbon-rich media. Such common phenomena indicate the possibility of using the Raman microspectroscopy as a probe of radiation damage in silica-based media.


Asunto(s)
Automóviles , Mediciones Luminiscentes , Humanos , Cinética , Mediciones Luminiscentes/métodos , Estudios Retrospectivos , Dosimetría Termoluminiscente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...